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Abstract 

The paper presents a new optimization model and solution approach for the investment and 

operations planning of offshore oil and gas field infrastructure. As compared to previous models 

where fiscal rules and uncertainty in the field parameters are considered separately, the proposed 

model is the first one in the literature that includes both of these complexities in an efficient 

manner. In particular, a tighter formulation for the production sharing agreements is used based 

on our recent work, and correlation among the endogenous uncertain parameters (field size, oil 

deliverability, water-oil ratio and gas-oil ratio) is considered to reduce the total number of 

scenarios in the resulting multistage stochastic formulation. To solve large instances, a 

Lagangean decomposition approach allowing parallel solution of the scenario subproblems is 

implemented in the GAMS grid computing environment. Computational results on a variety of 

oilfield development planning examples are presented to illustrate the efficiency of the model 

and the proposed solution approach. 
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1. Introduction  
The life cycle of a typical offshore oilfield project consists of the following five steps: 

(1) Exploration: This activity involves geological and seismic surveys followed by exploration 

wells to determine the presence of oil or gas.  

(2) Appraisal: It involves drilling of delineation wells to establish the size and quality of the 

potential field. Preliminary development planning and feasibility studies are also 

performed.  

(3) Development: Following a positive appraisal phase, this phase aims at selecting the most 

appropriate development plan among many alternatives. This step involves capital-

intensive investment and operating decisions that include facility installations, drilling, 

sub-sea structures, etc. 

(4) Production: After the facilities are built and wells are drilled, production starts where gas 

or water is usually injected in the field at a later time to enhance productivity. 

(5) Abandonment: This is the last phase of an oilfield development project and involves the 

decommissioning of facility installations and subsea structures associated with the field. 

Given that most of the critical investments are usually associated with the development 

planning phase of the project, this paper focus is on the key strategic/tactical decisions during 

this phase of the project. The major decisions involved in the oilfield development planning 

phase are the following: 

(i)  Selecting platforms to install and their sizes 

(ii)  Deciding which fields to develop and the order to develop them 

(iii) Deciding which wells and how many are to be drilled in the fields and in what sequence 

(iv)  Deciding which fields are to be connected to what facility 

(v)  Determining how much oil and gas to produce from each field  

Therefore, there are a very large number of alternatives that are available to develop a 

particular field or group of fields. However, these decisions should account for the physical and 

practical considerations, such as the following: a field can only be developed if a corresponding 

facility is present; nonlinear profiles of the reservoir that are obtained from reservoir simulators 

(e.g. ECLIPSE, 2008) to predict the actual flowrates of oil, water and gas from each field; 

limitation on the number of wells that can be drilled each year due to availability of the drilling 

rigs; and long-term planning horizon that is the characteristic of these projects. Therefore, 
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optimal investment and operating decisions are essential for this problem to ensure the highest 

return on the investments over the time horizon considered. By including all the considerations 

described here in an optimization model, this leads to a large-scale multiperiod mixed-integer 

nonlinear programming (MINLP) problem that is difficult to solve to global optimality.  The 

extension of this model to the cases that explicitly consider the fiscal rules with the host 

government and the uncertainties can further lead to a very complex problem to model and solve.  

 In terms of the deterministic approaches, the oilfield development planning has been 

modeled as linear programming (LP) (Lee and Aranofsky, 1958; and Aronofsky and Williams, 

1962) or mixed-integer linear programming (MILP) (Frair, 1973) models under certain 

assumptions to make them computationally tractable. Simultaneous optimization of the 

investment and operating decisions has been addressed in Bohannon (1970), Sullivan (1982) and 

Haugland et al. (1988) using MILP formulations with different levels of details. Behrenbruch 

(1993) emphasized the need to consider a correct geological model and to incorporate flexibility 

into the decision process for an oilfield development project. Iyer et al. (1998) proposed a 

multiperiod MILP model for optimal planning and scheduling of offshore oilfield infrastructure 

investment and operations. The model considers the facility allocation, production planning, and 

scheduling within a single model and incorporates the reservoir performance, surface pressure 

constraints, and oil rig resource constraints. Van den Heever and Grossmann (2000) extended the 

work of Iyer et al. (1998) and proposed a multiperiod generalized disjunctive programming 

model for oil field infrastructure planning for which they developed a bilevel decomposition 

method. As opposed to Iyer and Grossmann (1998), they explicitly incorporated a nonlinear 

reservoir model into the formulation but did not consider the drill-rig limitations. Barnes et al. 

(2002) optimized the production capacity of a platform and the drilling decisions for wells 

associated with this platform. The authors addressed the problem by solving a sequence of 

MILPs. Ortiz-Gomez et al. (2002) presented three mixed-integer multiperiod optimization 

models of varying complexity for the oil production planning.  Carvalho and Pinto (2006a) 

considered an MILP formulation for oilfield planning based on the model developed by 

Tsarbopoulou (2000), and proposed a bilevel decomposition algorithm for solving large-scale 

problems where the master problem determines the assignment of platforms to wells and a 

planning subproblem calculates the timing for the fixed assignments. The work was further 

extended by Carvalho and Pinto (2006b) to consider multiple reservoirs within the model. 
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Recently, Gupta and Grossmann (2012a) proposed a general multiperiod MINLP formulation for 

offshore oilfield development planning that simultaneously optimizes facility installation, well 

drilling, and production decisions considering oil, water and gas flows profiles. To solve the 

resulting non-convex MINLP problem, they reformulated it as an MILP using two theoretical 

properties and piecewise-linear approximations.  

 The major limitation with the above approaches is that they do not consider the fiscal 

rules explicitly in the optimization model that are associated to these fields, and mostly rely on 

the simple net present value (NPV) as an objective function. Therefore, the models with these 

objectives may yield the solutions that are very optimistic, which can in fact be suboptimal after 

considering the impact of fiscal terms. Van den Heever et al. (2000) and Van den Heever and 

Grossmann (2001) considered optimizing the complex economic objectives including royalties, 

tariffs, and taxes for the multiple gas field site where the schedule for the drilling of wells was 

predetermined as a function of the timing of the installation of the well platform. Based on a 

continuous time formulation for gas field development with complex economics of similar nature 

as Van den Heever and Grossmann (2001), Lin and Floudas (2003) proposed an MINLP model 

and solved it with a two-stage algorithm. Approaches based on simulation (Blake and Roberts, 

2006) and meta-modeling (Kaiser and Pulsipher, 2004) have also been considered for the 

analysis of the different fiscal terms. Gupta and Grossmann (2012b) presented a generalized 

mathematical framework and tighter formulations to incorporate a variety of fiscal contracts 

efficiently in the development planning. 

 In the literature work described so far, one of the major assumptions is that there is no 

uncertainty in the model parameters, which in practice is generally not true. Although limited, 

there has been some work that accounts for uncertainty in the problem of optimal development 

of oil and/or gas fields. Haugen (1996) proposed a single parameter representation for 

uncertainty in the size of reserves and incorporates it into a stochastic dynamic programming 

model for scheduling of oil fields. However, only decisions related to the scheduling of fields 

were considered. Meister et al. (1996) presented a model to derive exploration and production 

strategies for one field under uncertainty in reserves and future oil prices. The model was 

analyzed using stochastic control techniques. Jonsbraten (1998a) addressed the oilfield 

development planning problem under oil price uncertainty using an MILP formulation that was 

solved with a progressive hedging algorithm. Aseeri et al. (2004) introduced uncertainty in the 
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oil prices and well productivity indexes, financial risk management, and budgeting constraints 

into the model proposed by Iyer and Grossmann (1998), and solved the resulting stochastic 

model using a sampling average approximation algorithm. Jonsbraten (1998b) presented an 

implicit enumeration algorithm for the sequencing of oil wells under uncertainty in the size and 

quality of oil reserves. The paper considers investment and operation decisions only for one 

field. Lund (2000) addressed a stochastic dynamic programming model for evaluating the value 

of flexibility in offshore development projects under uncertainty in future oil prices and in the 

reserves of one field using simplified descriptions of the main variables. Cullick et al. (2003) 

proposed a model based on the integration of a global optimization search algorithm, a finite-

difference reservoir simulation, and economics. They presented examples having multiple oil 

fields with uncertainties in the reservoir volume, fluid quality, deliverability, and costs. Few 

other papers, (Begg et al., 2001; Zabalza-Mezghani et al., 2004; Bailey et al., 2005; and Cullick 

et al., 2007), have also used a combination of reservoir modeling, economics and decision 

making under uncertainty through simulation-optimization frameworks.  

However, most of these works either consider very limited flexibility in the investment and 

operating decisions, or handle the uncertainty in an ad-hoc manner. Stochastic programming 

provides a systematic framework to model problems that require decision-making in the presence 

of uncertainty by taking it into account with one or more parameters in terms of probability 

distribution functions (Birge and Louveaux, 1997). The concept of recourse action in the future, 

and availability of probability distribution in the context of oilfield development planning 

problems, makes it one of the most suitable candidates to address uncertainty. Moreover, 

conservative decisions are usually avoided in the solution utilizing the probability information 

given the potential of high expected profits in the case of favorable outcomes. In the context of 

stochastic programming, Goel and Grossmann (2004) considered a gas field development 

problem under uncertainty in the size and quality of reserves where decisions on the timing of 

field drilling were assumed to yield an immediate resolution of the uncertainty, i.e. the problem 

involves decision-dependent uncertainty as discussed in Jonsbraten et al. (1998); Goel and 

Grossmann (2006); and Gupta and Grossmann (2011). Linear reservoir models, which can 

provide a reasonable approximation for gas fields, were used. In their solution strategy, the 

authors used a relaxation problem to predict upper bounds, and solved multistage stochastic 

programs for a fixed scenario tree for finding lower bounds. Goel et al. (2006) later developed a 
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branch and bound algorithm for solving the corresponding disjunctive/mixed-integer 

programming model where lower bounds were generated by Lagrangean duality. Ettehad et al. 

(2011) presented a case study for the development planning of an offshore gas field under 

uncertainty optimizing facility size, well counts, compression power and production policy. 

Results of two solution methods, optimization with Monte Carlo sampling and stochastic 

programming were compared, which showed that the stochastic programming approach is more 

efficient. The models were also used in a value of information (VOI) analysis.  

The gradual uncertainty reduction has also been addressed for problems in this class. 

Stensland and Tjøstheim (1991) have addressed a discrete time problem for finding optimal 

decisions with uncertainty reduction over time and applied their approach to oil production. 

These authors expressed the uncertainty in terms of a number of production scenarios. Dias 

(2002) presented four propositions to characterize technical uncertainty and the concept of 

revelation towards the true value of the variable. These four propositions, based on the theory of 

conditional expectations, are employed to model technical uncertainty. Tarhan et al. (2009) 

addressed the planning of offshore oil field infrastructure involving endogenous uncertainty in 

the initial maximum oil flowrate, recoverable oil volume, and water breakthrough time of the 

reservoir, where decisions affect the resolution of these uncertainties in a gradual manner. The 

authors developed a multistage stochastic programming model and duality-based branch and 

bound algorithm taking advantage of the problem structure and globally optimizing each 

scenario problem independently. An improved solution approach was also proposed that 

combines global optimization and outer-approximation to optimize the investment and 

operations decisions (Tarhan et al., 2011). However, the model considers either gas/water or 

oil/water components for single field and single reservoir at a detailed level. Hence, realistic 

multi-field site instances can be expensive to solve with this model.  

It should be noted that there are multiple sources of uncertainty in the oil and gas field 

development problem as can be seen from the afore-mentioned literature work.  The market price 

of oil/gas, quantity and quality of reserves at a field are the most important sources of the 

uncertainty in this context. The uncertainty in oil prices is influenced by the political, economic 

or other market factors and it belongs to the exogenous uncertainty problems. The uncertainty in 

the reserves on the other hand, is linked to the accuracy of the reservoir data (technical 

uncertainty). While the existence of oil and gas at a field is indicated by seismic surveys and 
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preliminary exploratory tests, the actual amount of oil in a field, and the efficiency of extracting 

the oil will only be known after capital investment has been made at the field (Goel and 

Grossmann, 2004), i.e. endogenous uncertainty. Both, the price of oil and the quality of reserves 

directly affect the overall profitability of a project, and hence it is important to consider the 

impact of these uncertainties when formulating the decision policy. However, due to the 

significant computational challenge in this paper we only address the uncertainty in the field 

parameters where timing of uncertainty realizations is decision-dependent. In particular, we 

focus on the type of endogenous uncertainty where the decisions are used to gain more 

information, and resolve uncertainty either immediately or in a gradual manner. Therefore, the 

resulting scenario tree is decision-dependent that requires modeling a superstructure of all 

possible scenario trees that can occur based on the timing of the decisions (see Goel et al., 2006; 

Tarhan et al., 2009).  

 In this paper, we present a general multistage stochastic programming model for 

multiperiod investment and operations planning of offshore oil and gas field infrastructure. The 

model considers the deterministic models proposed in Gupta and Grossmann (2012a, 2012b) as a 

basis to extend to the stochastic programming using the modeling framework presented in Gupta 

and Grossmann (2011) for endogenous (decision-dependent) uncertainty problems. In terms of 

the fiscal contracts, we consider progressive production sharing agreements, whereas the 

endogenous uncertainty in the field parameters i.e. field size, oil deliverability, water-oil ratio 

and gas-oil ratio is considered, that can only be revealed once an investment is made in the field 

and production is started in it. Compared to the conventional models where either fiscal rules or 

uncertainty in the field parameters are taken into account, the proposed model is the first one in 

the literature that also allows considering both of these complexities simultaneously. To solve 

large instances of the problem, the Lagrangean decomposition approach similar to Gupta and 

Grossmann (2011), allowing parallel solution of the scenario subproblems, is implemented in the 

GAMS grid computing environment.  

The outline of this paper is as follows. First, we present a detailed problem description for 

offshore oilfield development planning under production sharing agreements and endogenous 

uncertainties. The corresponding multistage stochastic programming model is presented next in 

extensive as well as in compact form. The Lagrangean decomposition algorithm adapted from 

Gupta and Grossmann (2011) is explained to solve the stochastic oilfield planning model. The 
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proposed model and solution approach are then applied to multiple instances of the two oilfield 

development problems to illustrate their performances. 

2. Problem Statement 
In this paper, we consider the development planning of an offshore oil and gas field 

infrastructure under complex fiscal rules and endogenous uncertainties. In particular, a multi-

field site, F = {1,2,…}, with potential investments in floating production storage and offloading 

(FPSO) facilities, FPSO = {1,2,…}  with continuous capacities and ability to expand them in the 

future is considered (Figure 1). The connection of a field to an installed FPSO facility and a 

number of wells need to be drilled to produce oil from these fields for the given planning 

horizon. The planning horizon is discretized into T time periods, typically each with one year 

duration. The location of each FPSO facility and its possible connections to the given fields are 

assumed to be known. Notice that each FPSO facility can be connected to more than one field to 

produce oil, while a field can only be connected to a single FPSO facility due to engineering 

requirements and economic viability of the project. For simplicity, we only consider FPSO 

facilities. The proposed model can easily be extended to other facilities such as tension leg 

platforms (TLPs). The water produced with the oil is usually re-injected after separation, while 

the gas can be sold in the market. In this case, we consider natural depletion of the reserves, i.e. 

no water or gas re-injection.         

 
Figure 1: A typical offshore oilfield infrastructure representation 
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There are three major complexities in the problem considered here: 
2.1 Nonlinear Reservoir Profiles: We consider three components (oil, water and gas) 

explicitly during production from a field. Field deliverability, i.e. maximum oil flowrate from a 

field, water-oil-ratio (WOR) and gas-oil-ratio (GOR) are approximated by cubic equations (a)-(c) 

(see Figure 2), while cumulative water produced and cumulative gas produced from a field are 

represented by fourth order separable polynomials, eqs. (d)-(e) (see Gupta and Grossmann, 

2012a for details).  

 

 

 
 

Figure 2: Nonlinear Reservoir Characteristics for field (F1) for 2 FPSOs    (FPSO 1 and 2) 
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 The motivation for using the polynomials for cumulative water produced and cumulative 

gas produced in eqs. (d)-(e) as compared to WOR and GOR in eqs. (b)-(c) is to avoid bilinear 

terms, eqs. (f)-(g), in the formulation and allow converting the resulting model into an MILP 

formulation using piecewise linear approximations. All the wells in a particular field f are 

assumed to be identical for the sake of simplicity leading to the same reservoir profiles, eqs. (a)-

(g), for each of these wells. 

2.2 Production Sharing Agreements: There are fiscal contracts with the host government that 

need to be accounted for during development planning. In particular, we consider progressive 

(sliding scale) production sharing agreements with ringfencing provisions, which are widely used 

in several countries. The revenue flow in a typical production sharing agreement (PSA) can be 

seen as in Figure 3 (World Bank, 2007). First, in most cases, the company pays royalty to the 

government at a certain percentage of the total oil produced.  After paying the royalties, some 

portion of the remaining oil is treated as cost oil by the oil company to recover its costs. There is 

a ceiling on the cost oil recovery to ensure revenues to the government as soon as production 

starts. The remaining part of the oil, called profit oil, is divided between oil company and the 

host government at a certain percentage. The oil company needs to further pay income tax on its 

share of profit oil. Hence, the total contractor’s (oil company) share in the gross revenue is 

comprised of cost oil and contractor’s profit oil share after tax.  

 In this work, we consider a sliding scale profit oil share of the contractor linked to the 

cumulative oil produced. For instance, if the cumulative production (in MMbbl) is in the range of 

first tier, 2000 ≤≤ txc , the contractor receives 50% of the profit oil, while if the cumulative 

production (in MMbbl) reaches tier 2, 400200 ≤≤ txc , the contractor receives 40% of the profit 

oil, and so on (see Figure 4). Notice that this tier structure is a step function, which requires 

additional binary variables to model and makes the problem harder to solve. Moreover, the cost 

recovery ceiling is considered to be a fraction of the gross revenues in each time period t. For 
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simplicity, the cost recovery ceiling fraction and income tax rates are assumed to be fixed 

percentages (no sliding scale), and there are no explicit royalty provisions which is a 

straightforward extension.  

  

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Progressive profit oil share of the contractor 
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ensure that fiscal calculations are applied for each ringfence separately (see Gupta and 
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and Field 4-5 (Ringfence 2) in Figure 1 cannot be consolidated in one place. These ringfences 

may or may not have the same fiscal rules. Qualitatively, a typical ringfencing provision states 
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associated to a single ringfence, while a ringfence can include more than one field. In contrast, a 

facility can be connected to multiple fields from different ringfences for producing oil and gas. 

2.3 Endogenous Uncertainties: 

(a)       Uncertain Field Parameters: We consider here the uncertainty in the field parameters, 

i.e. field size, oil deliverability per well, water-oil ratio and gas-oil ratio. These are endogenous 

uncertain parameters since investment and operating decisions affect the stochastic process 

(Jonsbraten et al., 1998; Goel et al., 2006; Tarhan et al., 2009; and Gupta and Grossmann, 2011). 

In particular, the uncertainty in the field parameters can only be resolved when an investment is 

made in that field and production is started in it. Therefore, optimization decisions determine the 

timing of uncertainty realization, i.e. decision-dependent uncertainty (type 2).  

 
Figure 5: Oil deliverability per well for a field under uncertainty 
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d
foilf

d
f QQ ˆ

, ⋅=α
   

f∀          (h) 

For instance, if 1, >oilfα , then we have a higher oil deliverability than expected ( 1, =oilfα ), 

whereas for 1, <oilfα  a lower than expected oil deliverability is observed. Since, the uncertain 

field size (recoverable oil volume, fREC ) is an inverse function of the fraction oil recovery, a 

higher field size will correspond to the low fractional oil recovery, whereas a small field size will 

correspond to the higher fractional oil recovery for a given amount of the cumulative oil 

production.   

Similarly, eqs. (i) and (j) correspond to the uncertain field profiles for water-oil-ratio and 

gas-oil-ratio that are characterized by the uncertain parameters worf ,α and gorf ,α , respectively. 

Notice that since the cumulative water produced (eq. (d)) and the cumulative gas produced (eq. 

(e)) profiles are used in the model, instead of water-oil-ratio (eq. (b)) and gas-oil-ratio (eq. (c)), 

the uncertainty in the parameters worf ,α and gorf ,α  can be transformed into the corresponding 

uncertainty in the parameters wcf ,α and gcf ,α  as in eqs. (k) and (l), respectively. In particular, we 

use the correspondence among the coefficients of these two sets of the polynomials for this 

transformation (Gupta and Grossmann, 2012a). 

  fworff rowwor ˆ, ⋅= α
  

f∀          (i) 

  fgorff roggor ˆ, ⋅=α
  

f∀          (j) 

  fwcff cwwc ˆ, ⋅= α
  

f∀          (k) 

  fgcff cggc ˆ, ⋅= α
   

f∀          (l) 

Moreover, the uncertain parameters for every field, i.e. { }gorfworfoilfff REC ,,, ,,, αααθ =  

are considered to have a number of possible discrete realizations k
fθ

~
 with a given probability. 

Therefore, all the possible combinations of these realizations yield a set of scenarios supSs∈

where each scenario has the corresponding probability sp .  

(b) Correlation among the uncertain parameters: If the uncertain parameters are considered 

to be independent, the total number of scenarios defined by the set supS grows exponentially with 

the number of uncertain parameters and their possible realizations, which makes the problem 
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intractable. For instance, if there are only 2 fields, then 4 uncertain parameters for each field 

having 2 realizations will require 256 scenarios. Therefore, it becomes difficult to solve a multi-

field site problem with independent uncertainties in the set { }gorfworfoilfff REC ,,, ,,, αααθ = .  

Since in practice normally uncertainties are not independent, we can overcome this limitation by 

considering that there are correlations among the uncertain parameters for each individual field. 

In particular, the uncertain parameters for a field { }gorfworfoilfff REC ,,, ,,, αααθ =  are considered 

to be dependent. Therefore, only a subset of the possible scenarios supSS ⊂ is sufficient to 

represent the uncertainty. For instance, based on practical considerations, we can assume that if a 

field is of lower size than expected, then the oil deliverability is also lower ( 1, <oilfα ). 

Therefore, the scenarios with a combinations of higher oil deliverability ( 1, >oilfα ) and lower 

field size are not included in the reduced scenario set and vice-versa. Similarly, correlations for 

the water-oil ratio and gas-oil ratio can be considered to substantially reduce the original scenario 

set supS . Therefore, the problem can be considered as selecting a sample of the scenarios for 

each field, where a scenario for that field will be equivalent to the selected combinations of the 

realizations of the uncertain parameters { }gorfworfoilfff REC ,,, ,,, αααθ = . 

In the computational experiments, we only consider the extreme cases of the scenarios 

assuming perfect correlations, i.e. all uncertain parameters for a field have either low, medium or 

high realizations. Note that these assumptions on correlation among the field parameters are 

flexible and can be modified depending on the problem at hand. In addition to the correlation 

among the uncertain parameters for each individual field, one can also take into account the 

correlation among the fields based on the available information for a particular oilfield 

development site to further reduce the total number of scenarios. Notice also that the model and 

solution method presented in the paper is irrespective of whether a reduced scenario set S  is 

considered or the complete one ( supS  ).  

(c) Uncertainty Resolution Rules: Instead of assuming that the uncertainties are resolved as 

soon as a well is drilled in the field, i.e. immediate resolution, we assume that several wells need 

to be drilled and production has to be started from the field for this purpose. Moreover, since the 

uncertain parameters for a field { }gorfworfoilfff REC ,,, ,,, αααθ =  are assumed to be correlated as 

described above, the timing of uncertainty resolution in these parameters is also considered to the 
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same. This allows solving much larger multi-field site instances without losing much in terms of 

the quality of the solution.  

In contrast, Tarhan et al. (2009) considered a single field at a detailed level where no 

correlations among the uncertain parameters of the field were considered, and these parameters 

were allowed to be revealed independently at different time periods in the planning horizon. 

However, the resulting scenario tree even for a single field becomes very complex to model and 

solve. Therefore, we assume that the uncertainty in all the field parameters 

{ }gorfworfoilfff REC ,,, ,,, αααθ =  are resolved if at-least N1 number of wells have been drilled in 

the field, and production has been performed from that field for a duration of at-least N2 years. 

Notice that these assumptions on uncertainty resolution rules are flexible and can be adapted 

depending on the field information that is available. Moreover, the model can also be extended to 

the case where each parameter for a field is allowed to be revealed in different years based on the 

work of Tarhan et al. (2009) that will result in a significant increase in the computation expense.   

(d) Decision-dependent scenario trees: The multiperiod planning horizon and the discrete set 

of the selected scenarios for each field with given probabilities can be represented by scenario 

trees. However, since the timing of the uncertainty realization for a field (or its corresponding 

scenarios) depends on the drilling and operating decisions, the resulting scenario tree is also 

decision-dependent (see Gupta and Grossmann, (2011) for details). For instance, if we consider a 

set of two uncertain fields { }2,1=F  and the selected scenario set based on the parameter 

correlations for each field has 2 elements, }~,~{ 21
ff θθ , with equal probability. Therefore, the 

problem involves the following 4 scenarios each with a probability of 0.25: 

)}~,~(:4);~,~(:3);~,~(:2);~,~(:1{ 2
2

2
1

1
2

2
1

2
2

1
1

1
2

1
1 θθθθθθθθ=S  

Notice that each of these elements, }~,~{ 21
ff θθ , is equivalent to a selected combination of the 

realization of the corresponding uncertain parameters, for example

},,,{~ 1
,

1
,

1
,

11
gorfworfoilfff REC αααθ = . Figure 6 represents the scenario tree for this problem, where 

the uncertainty in the first field is resolved at the end of first year, since we drill N1 wells in the 

field at the beginning of year 1 and produce from this field during that year (N2 =1). The system 

can be in two different states in year 2 depending on the realized value of the uncertain 

parameter k
1

~
θ .  Similarly, uncertainty in the field 2 is resolved in year 4 under the scenarios 3 and 
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4 due to drilling and operating decisions, whereas it remains uncertain in the scenarios 1 and 2. 

Therefore, the resulting scenario tree depends on the optimization decisions, which are not 

known a priori, requiring modeling a superstructure of the all possible scenario trees that can 

occur based on our decisions. Notice that the scenario-tree also allows considering the cases 

where the number of wells drilled in a field is less than the one required for the uncertainty 

resolution (i.e. N1 wells), and therefore, the corresponding scenarios remain indistinguishable.  

 
Figure 6: Decision-dependent scenario tree for two fields 

An alternate representation of the decision-dependent scenario-tree (Ruszczynski, 1997) is 

used to model the problem as a multistage stochastic program in which the scenarios are treated 

independently and related through the non-anticipativity constraints for states of different 

scenarios that are identical (see Goel and Grossmann, 2006; and Gupta and Grossmann, 2011).       

The problem is to determine the optimal investment and operating decisions to maximize 

the contractor’s expected NPV for a given planning horizon considering the above production 

sharing agreements and endogenous uncertainties. In particular, investment decisions in each 

time period t and scenario s include FPSO facilities installation or expansion, and their respective 

installation or expansion capacities for oil, liquid and gas, fields-FPSO connections, and the 

number of wells that need to be drilled in each field f, given the restrictions on the total number 

of wells that can be drilled in each time period t over all the given fields. Operating decisions 

include the oil/gas production rates from each field f in each time period t under every scenario s.  

Drill N1 wells in field 1 Year 1

Year 2

Year 5

Year 3

Year 4

1
1

~
θ 2

1
~
θ

1
2

~
θ 2

2
~
θ

Drill N1 wells in field 2 

1,2 3 4
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It is assumed that the installation and expansion decisions occur at the beginning of each 

time period t, while operations take place throughout the time period. There is a lead time of l1 

years for each FPSO facility initial installation, and a lead time of l2 years for the expansion of an 

earlier installed FPSO facility. Once installed, we assume that the oil, liquid (oil and water) and 

gas capacities of a FPSO facility can only be expanded once. These assumptions are made for the 

sake of simplicity, and both the model and the solution approaches are flexible enough to 

incorporate more complexities. In the next section, we propose a multistage stochastic 

programming model for oilfield development planning with production sharing agreements and 

decision-dependent uncertainty in the field parameters as described.  

 

3. Multistage Stochastic Programming Model  
We present a general multistage stochastic programming model for offshore oilfield 

development planning that considers the trade-offs involved between investment and operating 

decisions, uncertainties in the field parameters and profit share with the government while 

maximizing the overall expected NPV for the contractor. Notice that the model is intended to be 

applied every year of the project in a rolling horizon manner, not just once for the entire planning 

horizon.  In this way, new data for the model is updated as it becomes available every year. The 

constraints involved in the model are as follows:  

(i) Objective Function: The objective function is to maximize the total expected NPV of the 

contractor as in (1), which is the summation of the NPVs over all the scenarios having 

probabilities sp . The NPV of a particular scenario s is the difference between discounted total 

contractor’s gross revenue share and total cost over the planning horizon (2). The total 

contractor’s share in a particular time period t and scenario s is the sum of the contractor’s share 

over all the ring-fences (rf) as given in equation (3). Similarly, constraints (4) and (5) represent 

the total capital and operating expenses for each scenario s in time period t.  

ENPVMax        (1) 

∑∑ −−⋅=
t

stot
t

stot
t

stot
tt

s

s OPERCAPTotalConShdispENPV )( ,,,

  (2) 

∑=
rf

s
trf

stot
t TotalConShTotalConSh ,

,

   st,∀   (3) 
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∑=
rf

s
trf

stot
t CAPCAP ,

,

    st,∀   (4) 

∑=
rf

s
trf

stot
t OPEROPER ,

,

    st,∀                 (5)    

(ii) Cost Calculations: The total capital expenses in scenario s for a ring-fence rf contains two 

components as given in equation (6). One is field specific (eq. 7) that accounts for the connection 

costs between a field and a FPSO facility, and cost of drilling the wells for each of the field in 

that ring-fence rf. The other cost component is FPSO specific (eq. 8) that includes the capital 

expenses for the corresponding FPSO facilities. Eq. (9) calculates the total cost of an FPSO 

facility in time period t for scenario s which is disaggregated in eq. (10) over various fields (and 

therefore ring-fences as in (11)). The cost disaggregation is performed on the basis of the field 

sizes to which the FPSO is connected (eq. (12)-(14)), where set Ffpso is the set of all the fields that 

can be connected to FPSO facility fpso and the binary variable son
fpsofb ,

,  represents the potential 

connections. Notice that there is an uncertainty in the recoverable oil volume of the field ( s
fREC ) 

used in eq. (14) that multiplies the binary variable son
fpsofb ,

, . To linearize the bilinear terms in eq. 

(14), we use an exact linearization technique (Glover, 1975) by introducing the positive variables 

( sfield
tfpsoff

sfield
tfpsoff ZDZD ,

,,,'
,

,,,' 1, ) and )1,( ,,,,
s

tfpsof
s

tfpsof ZDZD that results in the constraints (15)-(23).  

s
trf

s
trf

s
trf CAPCAPCAP ,,, 21 +=

   

strf ,,∀  (6) 
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The total operating expenses for scenario s in time period t for ring-fence rf , eq. (24), are 

the operation costs corresponding to the total amount of liquid and gas produced. 

[ ]stot
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gas
trf

stot
trf

stot
trf
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trft

s
trf gOCwxOCOPER ,

,,
,

,
,

,,, )( ++= δ
     

strf ,,∀  (24) 

(iii) Total Contractor Share Calculations: The total contractor share in scenario s for ring-

fence rf in time period t, eq. (25), is the sum of contractor’s after-tax profit oil share for that ring-

fence and the cost oil that it keeps to recover the expenses. The contractor’s profit oil share after 

tax in scenario s is the difference of the contractor’s profit oil share before tax and income tax 
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paid as in constraint (26). The tax paid by the contractor on its profit oil share depends on the 

given tax rate ( tax
trff , ) as in constraint (27).   

s
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trf COConShTotalConSh ,
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The contractor’s share before tax for scenario s in each time period t is some fraction of the 

total profit oil during that period t for ring-fence rf. Note that we assume here that this profit oil 

fraction, po
irff , , is based on a decreasing sliding scale system that is linked to the cumulative 

amount of oil produced s
trfxc , , where i is the index of the corresponding tier. Therefore, for 

possible levels i (i.e. tiers) of cumulative amount of oil produced by the end of time period t in 

scenario s, the corresponding contractor’s profit oil share can be calculated using disjunction (28) 

where the boolean variable tirfZ ,,  is true if the cumulative oil produced lies between the tier i 

threshold. This disjunction (28) can further be rewritten as integer and mixed-integer linear 

constraints (29)-(36) using the convex-hull formulation (Raman and Grossmann, 1994).  
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}1,0{,, ∈s
tirfZ  

The cumulative amount of oil produced from a ring-fence rf  by the end of time period t in 

scenario s is calculated as the sum of the cumulative amount of oil produced by that time period 

from all the fields associated to that ring-fence, eq. (37). Constraint (38) represents the total 

profit oil in time period t for a ring-fence rf as the difference between gross revenue and the cost 

oil for scenario s. The gross revenues (39) in each time period t for a ring-fence rf in scenario s, 

are computed based on the total amount of oil produced and its selling price, where total oil flow 

rate in time period t for ring-fence rf, is calculated as the sum of the oil production rates over all 

the fields in that ring-fence, i.e. set Frf , in equation (40).  For simplicity, we only consider the 

revenue generated from the oil sales, which is much larger in general as compared to the revenue 

from gas. 
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The cost oil in time period t for a ring-fence rf, constraint (41), is calculated as the 

minimum of the cost recovery in that time period and maximum allowable cost oil (cost recovery 

ceiling) in scenario s. Eq. (41) can further be rewritten as mixed-integer linear constraints (42)-

(47). Cost recovery in time period t for a ring-fence rf in scenario s, constraint (48), is the sum of 

capital and operating costs in that period t and cost recovery carried forward from previous time 

period t-1. Any unrecovered cost (that is carried forward to the next period) in time period t for a 
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ring-fence rf, is calculated as the difference between the cost recovery and cost oil in time period 

t for a scenario s (eq. (49)).  
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(iv) Tightening Constraints:  The logic constraints (50) and (51) that define the tier sequencing 

are included in the model to tighten its relaxation.  These constraints can be expressed as integer 

linear inequalities, (52) and (53), respectively, (Raman and Grossmann, 1991). In addition, the 

valid inequalities (54), are also included to bound the cumulative contractor’s share in the 

cumulative profit oil by the end of time period t, based on the sliding scale profit oil share and 

cost oil that has been recovered (see Gupta and Grossmann, 2012b for details). 
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(v) Reservoir Constraints: Constraints (55)-(58) predict the reservoir behavior for each field f 

in each time period t for a scenario s. In particular, constraint (55) restricts the oil flow rate from 

each well for a particular FPSO-field connection in time period t to be less than the deliverability 

of that field per well in scenario s. Equation (56) represents the field deliverability per well in 

scenario s at the beginning of time period t+1 for a particular FPSO-field connection as the cubic 

equation in terms of the fractional oil recovered by the end of time period t from that field. In 

particular, (56a) corresponds to the oil deliverability in time period 1, while (56b) corresponds to 

the rest of the time periods in the planning horizon. Notice that the uncertainty in the oil 

deliverability profile is characterized by the uncertain parameter s
oilα . Constraints (57) and (58) 

represent the separable polynomials for the cumulative water and cumulative gas produced by 

the end of time period t for a specific field-FPSO connection in scenario s, where s
wcα  and s

gcα are 

the respective uncertain parameters. The motivation for using polynomials for cumulative water 

produced and cumulative gas produced as compared to WOR and GOR, is to avoid bilinear 

terms in the formulation, and allow converting the resulting MINLP model into an MILP 

formulation as explained in Gupta and Grossmann (2012a).   
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Notice that variables swc
tfpsofQ ,

,, and sgc
tfpsofQ ,

,, will be non-zero in equations (57) and (58) if

s
tffc , is non-zero even though that particular field-FPSO connection is not present. Therefore, 

additional constraints (59)-(66) need to be included to equate the actual cumulative water 

produced ( s
tfpsofwc ,, ) and cumulative gas produced ( s

tfpsofgc ,, ) for a field-FPSO connection by 

the end of time period t to the corresponding dummy variables swc
tfpsofQ ,

,, and sgc
tfpsofQ ,

,, only if that 

field-FPSO connection is present in time period t, else it is zero.     
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Eq. (67) and (68) compute the water and gas flow rates in time period t from a field to 

FPSO facility in scenario s as the difference of cumulative amounts produced by the end of 

current time period t and previous time period t-1, divided by the time duration of that period.  
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(vi) Field-FPSO flow constraints: The total oil flow rate in (69) from each field f in time period 

t for a scenario s is the sum of the oil flow rates that are directed to FPSO facilities in that time 

period t, whereas oil that is directed to a particular FPSO facility from a field f in scenario s is 

calculated as the multiplication of the oil flow rate per well and number of wells available for 

production in that field (eq. (70)). Eq. (71) computes the cumulative amount of oil produced 

from field f by the end of time period t in scenario s, while (72) represents the fractional oil 

recovery by the end of time period t. The cumulative oil produced in scenario s is also restricted 

in (73) by the recoverable amount of oil from the field. Eqs. (74)-(76) compute the total oil, 

water and gas flow rates into each FPSO facility, respectively, in time period t from all the given 

fields in each scenario s. The total oil, water and gas flowrates in each time period t for scenario 

s are calculated as the sum of the production rate of these components over all the FPSO 

facilities in equations (77)-(79), respectively. 
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(vii) FPSO Capacity Constraints: Eqs. (80)-(82) restrict the total oil, liquid and gas flow rates 

into each FPSO facility to be less than its corresponding capacity in each time period t, 

respectively. These three different kinds of capacities of a FPSO facility in time period t are 

computed by equalities (83)-(85) as the sum of the corresponding capacity at the end of previous 

time period t-1, installation capacity at the beginning of time period t-l1 and expansion capacity 

at the beginning of time period t-l2, where l1 and l2 are the lead times for FPSO installation and 

expansions, respectively.   

soil
tfpso

s
tfpso Qx ,

,, ≤      
stfpso ,,∀  (80)  

sliq
tfpso

s
tfpso

s
tfpso Qwx ,

,,, ≤+
    

stfpso ,,∀  (81)  

sgas
tfpso

s
tfpso Qg ,

,, ≤      
stfpso ,,∀  (82)  

soil
ltfpso

soil
ltfpso

soil
tfpso

soil
tfpso QEQIQQ ,

,
,

,
,

1,
,

, 21 −−− ++=
  

stfpso ,,∀  (83)  

sliq
ltfpso

sliq
ltfpso

sliq
tfpso

sliq
tfpso QEQIQQ ,

,
,

,
,

1,
,

, 21 −−− ++=
  

stfpso ,,∀  (84)  

sgas
ltfpso

sgas
ltfpso

sgas
tfpso

sgas
tfpso QEQIQQ ,

,
,
,

,
1,

,
, 21 −−− ++=

  
stfpso ,,∀  (85) 

26 
 



 
 

(viii) Logic Constraints: Inequalities (86) and (87) restrict the installation and expansion of a 

FPSO facility to take place only once, respectively, while inequality (88) states that the 

connection between a FPSO facility and a field can be installed only once during the whole 

planning horizon. Inequality (89) ensures that a field can be connected to at most one FPSO 

facility in each time period t, while (90) states that at most one FPSO-field connection is possible 

for a field f during the entire planning horizon under each scenario s. Constraints (91) and (92) 

state that the expansion in the capacity of a FPSO facility and the connection between a field and 

a FPSO facility, respectively, in time period t can occur only if that FPSO facility has already 

been installed by that time period.  
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(ix) Upper bounding constraints: Inequality (93) states that the oil flow rate per well from a 

field f to a FPSO facility in time period t will be zero if that FPSO-field connection is not 

available in that time period in a scenario s. Constraints (94)-(99) are the upper-bounding 

constraints on the installation and expansion capacities for FPSO facilities in time period t for 

each scenario s. The additional upper bounds on the oil, liquid and gas expansion capacities of 

FPSO facilities, (100)-(102), follow from the fact that these expansion capacities should be less 

than a certain fraction (µ) of the initial built capacities, respectively.    
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(x) Well drilling limitations: The number of wells available for production from a field in 

scenario s is calculated from (103) as the sum of the wells available at the end of previous time 

period and the number of wells drilled at the beginning of time period t. The maximum number 

of wells that can be drilled over all the fields during each time period t and in each field f during 

complete planning horizon are restricted by the respective upper bounds in (104) and (105).   
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(xi) Initial Non-anticipativity Constraints: In addition to the above constraints (1)-(105) that 

are equivalent to the constraints for the deterministic model with fiscal rules for each scenario s 

as in Gupta and Grossmann (2012b), we need the initial non-anticipativity constraints, eqs. 

(106)-(115), for time periods TTI ⊂ where the set IT  may include only first or few initial time 

periods. These constraints ensure that we make the same decisions (FPSO installations, 

expansions and their oil,  liquid, gas capacities; well drilling schedule and field-FPSO 
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connections) in scenarios s and s’ until uncertainty in the any of the parameters cannot be 

revealed.  
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(xii) Conditional Non-anticipativity Constraints: To determine the scenario pairs (s, s’) that 

are indistinguishable at the beginning of time period t, we consider the uncertainty resolution 

rule as explained in section 2.3. In particular, we assume that the uncertainty in all the 

parameters of a field is revealed if we drill at-least N1 number of wells in the field, and produce 

from that field for at-least N2 number of years. Therefore, eq. (116) is used relate the number of 

wells in the field to the binary variable s
tfw ,1
, such that the variable s

tfw ,1
,  is true if and only if the 

number of wells drilled in the field are less than N1. Similarly, the production from the field f has 

been made for less than N2 years, if and only if s
tfw ,2
, is true as represented in eqs. (117)-(118). 

The logic constraint (119) sets the value of the binary variable s
tfw ,3
,  to be true if and only if 

either of s
tfw ,1
,  or s

tfw ,2
,  are true, i.e. uncertainty in the field f  has not been revealed in scenario s at 

the beginning of time period t.  
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Based on the above value of the variable s
tfw ,3
, , equation (120) determines the value of the 

boolean variable ',ss
tZ . In particular, two scenarios (s, s’) will be indistinguishable at the 

beginning of time period t if and only if for each field f that distinguishes those scenarios (i.e.

)',( ssDf ∈ ), s
tfw ,3
,  is true. Therefore, eqs. (116)-(120) can be used to determine the 

indistinguishable scenarios at the beginning of time period t based on the decisions that have 

been implemented before that time period. Notice that as a special case, where either well 

drilling or production from the field is sufficient to observe the uncertainty, then one only needs 

to consider eq. (116) or eqs. (117)-(118), respectively, and eq. (120) without introducing the 

additional variable s
tfw ,3
, .  

s
tfssDf

ss
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The conditional non-anticipativity constraints in disjunction (121) equate the decisions in 

scenarios s and s’ for the later time periods TTC ⊂ , if these scenarios are indistinguishable at 

the beginning of time period t, i.e. for which ',ss
tZ is true calculated in eq. (120). 
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The multistage stochastic mixed-integer nonlinear disjunctive programming model (MSSP-

ND) for offshore oilfield investment and operations planning involves constraints (1)-(13), (15)-

(27), (29)-(40), (42)-(49), (52)-(121) that consider endogenous uncertainty in the field 

parameters and sliding scale production sharing agreements with ringfencing provisions. In 

particular, constraints (56b)- (58) and (70) are nonlinear and non-convex constraints in the 

model. These constraints can be linearized using exact linearization and piecewise linear 

approximation techniques described in Gupta and Grossmann (2012a) to convert the nonlinear 

model (MSSP-ND) to a linear one (MSSP-LD). Notice that the resulting model will be an 

extension of the deterministic MILP fiscal model (Model 3F) in Gupta and Grossmann (2012b) 

to the stochastic case using the modeling framework presented in Gupta and Grossmann (2011).  

 

4. Compact representation of the Multistage Stochastic Model  
The proposed multistage stochastic mixed-integer linear disjunctive programming model 

(MSSP-LD) in the previous section can be represented in the following compact form, where all 

the variables in the detailed model, integer and continuous, are aggregated into the variables s
tx :  
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The objective function (122) in the above model (MD) maximizes the expectation of an 

economic criterion over the set of scenarios Ss∈ , and over a set of time periods Tt∈ , which is 

equivalent to eq. (1). For a particular scenario s, inequality (123) represents constraints that 

govern decisions s
tx  in time period t and link decisions across time periods. These individual 

scenario constraints correspond to the eqs. (2)-(13), (15)-(27), (29)-(40), (42)-(49) and (52)-

(105), where the nonlinear and non-convex constraints (56b)- (58) and (70) have been linearized 

using exact linearization and piecewise linear approximation techniques described in Gupta and 

Grossmann (2012a).  

Non-anticipativity (NA) constraints for initial time periods TTI ⊂  are given by equations 

(124) for each scenario pair (s,s’) to ensure the same decisions in all the scenarios, which are the 

compact representation for constraints (106)-(115). The conditional NA constraints are written 

for the later time periods TTC ⊂  in terms of logic propositions (125) and disjunctions (126). 

Notice that the set of initial time periods IT  may include first few years of the planning horizon 

until uncertainty cannot be revealed, while CT  represents the rest of the time periods in the 

planning horizon. The function )....,( 121
s
t

ss xxxF − in eq. (125) is an uncertainty resolution rule for a 

given pair of scenarios s and s’ that determines the value of the corresponding boolean variable 
',ss

tZ based on the decisions that have been implemented so far as shown in eqs. (116)-(120). The 
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variable ',ss
tZ is further used in disjunction (126) to ensure the same decisions in scenarios s and 

s’ if these are still indistinguishable in time period t, which is similar to the disjunctions (121). 

Equations (127)-(128) define the domain of the discrete and continuous variables in the model.  

Notice that the model with a reduced number of scenario pairs (s,s’) that are sufficient to 

represent the non-anticipativity constraints can be obtained from model (MD) after applying the 

three properties presented in Gupta and Grossmann (2011). These properties are defined on the 

basis of symmetry, adjacency and transitivity relationship among the scenarios. The reduced 

model (MDR) can be formulated from (MD) as follows, where 3P  is the set of minimum number 

of scenario pairs that are required to represent non-anticipativity in each time period t,  
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The mixed-integer linear disjunctive model (MDR) can be further converted to a mixed-

integer linear programming model (MLR). First, the logic constraints (130) are re-written as the 

mixed-integer linear constraints eq. (132) based on the uncertainty resolution rule where ',ss
tz is a 

binary variable that takes a value of 1 if scenario pair (s,s’) is indistinguishable in time period t, 

else it is zero. The disjunction (131) can then be converted to mixed-integer linear constraints 

(133) and (134) using the big-M formulation. The resulting mixed-integer linear model (MLR) 

includes constraints (122), (123), (129), (132), (133), (134), (127) and (128).  
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Figure 7: Structure of a typical Multistage Stochastic Program with Endogenous uncertainties 

 Figure 7 represents the block angular structure of model (MLR), where we can observe 

that the initial (eq. (129)) and conditional (eqs. (132), (133) and (134)) non-anticipativity 

constraints link the scenario subproblems. Therefore, these are the complicating constraints in 

the model. However, this structure allows decomposing the fullspace problem into smaller 

subproblems by relaxing the linking constraints as in Gupta and Grossmann (2011). It should be 

noted that the NACs (especially conditional NACs) represent a large fraction of the total 

constraints in the model. For clarity, we use this compact representation (MLR) in the next 

section to describe the solution approach instead of the detailed model (MSSP-LD) presented in 

the previous section. 

5. Solution Approach 
The reduced model (MLR) is composed of scenario subproblems connected through the initial 

(eq. (129)) and conditional (eqs. (132), (133) and (134)) non-anticipativity (NA) constraints. If 

these NA constraints are either relaxed or dualized using Lagrangean decomposition, then the 

problem decomposes into smaller subproblems that can be solved independently for each 

scenario within an iterative scheme for the multipliers as described in Carøe and Schultz (1999) 

and in Gupta and Grossmann (2011). In this way, we can effectively decompose and solve the 

Scenario Constraints

Initial NACs

Conditional NACs
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large-scale oilfield development planning instances. The Lagrangean decomposition algorithm of 

Figure 8 for MSSP with endogenous uncertainties as proposed in Gupta and Grossmann (2011) 

involves obtaining the upper bound (UB) by solving the Lagrangean problem (L1-MLR) with 

fixed multipliers ',ss
tλ . The Lagrangean problem (L1-MLR) is formulated from the mixed-integer 

linear reduced model (MLR) by relaxing all the conditional NA constraints (132), (133) and 

(134), and dualizing all the initial NA constraints (129) as penalty terms in the objective 

function.  This gives rise to the subproblems for each scenario Ss∈ , (L1-MLRs) that can be 

solved independently in parallel. 
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The lower bound (LB) or feasible solution is generated by using a heuristic based on the 

solution of the Lagrangean problem (L1-MLR). In this heuristic, we fix the decisions obtained 

from the above problem (L1-MLR) in the reduced problem (MLR) such that there is no violation 

of NA constraints and solve it to obtain the lower bound. The sub-gradient method by Fisher 

(1985) is used during each iteration to update the Lagrangean multipliers. The algorithm, which 

is shown in Figure 5, stops when either a maximum iteration/time limit is reached, or the 

difference between the lower and upper bounds, LB and UB, is less than a pre-specified 

tolerance.  
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Notice that the extended form of this method relying on duality based branch and bound 

search, has also been proposed in Goel and Grossmann (2006), Tarhan et al. (2009), and Tarhan 

et al. (2011) to close the gap between the upper and the lower bounds. Moreover, a new 

Lagrangean decomposition algorithm is proposed in the next Gupta and Grossmann (2013) to 

further improve the quality of the dual bound at the root node. 

6. Numerical Results 
In this section, we present computational results for the offshore oilfield development planning 

examples under endogenous uncertainty in the field parameters, which resolves as a function of 

investment and operating decisions as described before. Moreover, we consider a case where 

progressive production sharing agreements are also present. The multistage stochastic MILP 

model (MLR) presented in section 4 is considered that maximizes the expected NPV value over 

the given planning horizon. The model is implemented in GAMS 23.6.3 and run on an Intel Core 

i7, 4GB RAM machine using CPLEX 12.2 solver for all the instances. 

6.2.1 3 Oilfield Planning Example  

Case (i): Uncertainty in the field size only (4 scenarios) 

Initial Multipliers (λ0)                     
and iteration no. k = 0 

LB = -∞              
UB = ∞ 

Yes 

Solve Lagrangean subproblem 
with fixed multipliers to get UB 

 

 

Gap < ε             
or k > kmax 

Stop 

Find LB (Feasible Solution)                               
by using a heuristic 

 

 No 

Update Lagrangean multipliers 
using Sub-gradient method 

 

 

Figure 5: Lagrangean Decomposition algorithm 
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In this instance, we consider 3 oilfields and 3 potential FPSO’s that can be installed. There are a 

total of 9 possible connections among field-FPSO (Figure 9), and 30 wells can be drilled in the 

fields over the planning horizon of 10 years. Field 3 has a recoverable oil volume (field size) of 

500 MMbbls. However, there is uncertainty in the size of fields 1 and 2, where each one has two 

possible realizations (low, high) with equal probability. Therefore, there are a total of 4 scenarios 

each with a probability of 0.25 (see Table 1). Notice that for simplicity we only consider the 

cases with same probabilities for all the scenarios throughout this paper. In our future paper, if it 

would be possible, we will include more realistic probability values for the examples. 

 
Figure 9: 3 oilfield planning example 

Table 1: 3 oilfield planning example, case (i) 

Scenarios s1 s2 s3 s4 

Field 1 Size (MMbbls) 57 403 57 403 

Field 2 Size (MMbbls) 80 80 560 560 

Scenario Probability 0.25 0.25 0.25 0.25 

  

It is assumed that the uncertainty in field 1 size is revealed after drilling 3 wells (N1= 3) in 

the field and producing for 1 year (N2= 1) from it. Whereas, field 2 needs at-least 4 wells to be 

drilled (N1= 4) and one year of production (N2= 1) for this purpose. The problem is to determine 

the optimum investment (FPSO installations and expansions, field-FPSO connections and well 

drilling) and operating decisions (oil production rate) with an objective to maximize the total 

expected NPV (ENPV) over the planning horizon.  

   

FPSO 1 FPSO 3

Field 1

Field 3

Field 2

Total Oil/Gas 
Production

FPSO 2
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Table 2: Model statistics for the 3 oilfield example, case (i) 

 

 

 

 

 
       1         2              3                 4 

Figure 10: Optimal solution for 3 oilfield example, case (i) 

 The optimal ENPV for the problem is $11.50 billion when the reduced model (MLR) is 

solved in fullspace using CPLEX 12.2 solver requiring 1184s. Table 2 presents the model 

statistics for this instance. The solution suggests installing only FPSO 3 in the first year (see 

Figure 10) with a capacity of 500 kstb/d and 333.5 MMSCF/d for liquid and gas, respectively. 

The facility is available to produce at the beginning of year 4 due to a lead time of three years.  

Then, we drill 3, 5 and 12 wells in fields 1,2 and 3, respectively, given the drilling-rig limitation 

of a total 20 wells in a year. Since, fields 1 and 2 have uncertainties, based on the realization of 

the uncertainty in their field sizes, more wells are drilled in these fields in the future for the 

favorable scenarios compared to the unfavorable outcomes, whereas no more wells are drilled in 

field 3. In particular, the favorable scenarios for field 1 are scenarios 2 and 4, where a total of 7 

wells are drilled in the field. On the other hand, field 2 has favorable scenarios 3 and 4, where a 

L,L H,H

drill (3,5,12)

drill (1,0) (4,0) (0,6) (4,6)

H,L L,H
Uncertainty 
Revealed

Year 1

Year 4

Year 5

Year 6

Year 7

Year 8

Year 9

Year 10

Build FPSO 3 (500, 333.5)

drill (0,2) (0,4) (3,0)

Problem Type 

Number of 

Constraints 

Continuous 

Variables 

Discrete 

Variables 

SOS1 

Variables 

Reduced Model (MLR) 16,473 9,717 876 240 
Individual Scenario 3,580 2,390 179 60 
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total of 11 wells are drilled in the field. Due to the different drilling and production decisions in 

different scenarios based on the uncertainty realizations, the capacity of FPSO3 is expanded in 

year 5 for scenarios 2, 3 and 4, whereas no expansion is made in the FPSO3 capacity in scenario 

1. We can observe that the optimal scenario-tree is decision-dependent which is not known a-

priori (Figure 10).  

 
Figure 11: Lagrangean decomposition results for 3 oilfield example, case (i) 

 

The multistage stochastic model (MLR) is also solved using the Lagrangean decomposition 

algorithm presented in the previous section that relies on dualizing the initial NACs and 

removing the conditional NACs. Figure 11 demonstrates the progress of the bounds obtained at 

the root node using this decomposition approach. A termination criterion of either 1% gap or 20 

sub-gradient iterations is used. We can observe that the problem can be solved in ~1% optimality 

tolerance in only 466s for the sequential implementation compared to the fullspace model that 

takes 1184s. Moreover, the parallel implementation of the Lagrangean decomposition algorithm 

in GAMS with 8 processors only takes 259s. Therefore, the proposed strategy reduces the 

solution time for this 4 scenario instance by more than 75% compared to the fullspace model. It 

is also important to note that the reformulation of the MINLP model (Model 2) to MILP 

approximation (Model 3) in Gupta and Grossmann (2012a) allows us to use this decomposition 

strategy with valid upper and lower bounds on the objective function value, without solving the 
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non-convex MINLP model to global optimality which is quite expensive. Notice that the solution 

of the expected value problem considering the mean value of the field sizes is $11.28 billion. 

Therefore, the value of the stochastic solution for this case is $220 million or ~2%.    

 

Case (ii): Uncertainty in the field size, oil deliverability, WOR and GOR (4 scenarios) 

In this case, we consider uncertainty in the field size, oil deliverability, water-oil ratio (WOR) 

and gas-oil-ratio (GOR) for oilfields 1 and 2. Notice that oil deliverability, WOR and GOR are 

represented by the univariate polynomials in terms of the fractional oil recovery as shown in 

equations (143)-(145), respectively.  

   )( fcgQ o
d ⋅=α      (143) 

   )( fcgwor w ⋅=α      (144) 

   )( fcggor g ⋅=α      (145) 

The uncertainty in oil deliverability, WOR and GOR is characterized by the uncertainty in 

corresponding parameters oα , wα  and gα . We assume that the uncertain parameters for a field 

are correlated, and that uncertainty in these parameters is resolved at the same time as explained 

earlier. This allows us to reduce a large number of scenarios in the problem. The two possible 

combinations of these parameters for each field results in a total of 4 scenarios each with a 

probability of 0.25 as can be seen in Table 3. The data for the rest of the problem are as in case 

(i) presented above. 

Table 4 summarizes the computational results for this case, and we can observe the similar 

trends as in the previous case.  In particular, the fullspace multistage stochastic model using 

CPLEX 12.2 takes >10,000s to solve the problem to optimality and it yields an expected NPV 

value of $11.95 billion. The sequential and parallel implementations (8 processors) of the 

proposed Lagrangean decomposition approach provide a solution of $11.94 billion with more 

than an order of magnitude reduction in solution times. To further reduce the gap between the 

upper and the lower bounds, the algorithm can be extended to the duality based branch and 

bound search procedure as proposed in Goel and Grossmann (2006). In addition, an improved 

Lagrangean decomposition approach that yields a tighter dual bound at the root node is also 

presented in Gupta and Grossmann (2013). 
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Table 3: 3 oilfield planning example, case (ii) 

Scenarios s1 s2 s3 s4 

 

 

Field 1 

 

Size (MMbbls) 57 403 57 403 

oα  0.75 1.25 0.75 1.25 

wα  0.75 1.25 0.75 1.25 

gα  0.75 1.25 0.75 1.25 

 

 

Field 2 

Size (MMbbls) 80 80 560 560 

oα  0.75 0.75 1.25 1.25 

wα  0.75 0.75 1.25 1.25 

gα  0.75 0.75 1.25 1.25 

Scenario Probability 0.25 0.25 0.25 0.25 

Table 4: Computational results for 3 oilfield example, case (ii) 

 Fullspace Lagrangean Decomposition 

Sequential Parallel 

 UB ($109) 11.95 12.14 12.14 

LB ($109) 11.95 11.94 11.94 

Solution Time (s) 10390 438 257 

% Gap 0% 1.66% 1.66% 

Subgradient iterations - 20 20 

Case (iii): Uncertainty in the field size and progressive production sharing agreements  

We also extend the 3 oilfield example to the case where we include the progressive production 

sharing agreements and a planning horizon of 15 years. Table 5 represents the sliding scale profit 

share of the contactor involving 3 tiers that are defined on the basis of the cumulative oil 

production. The cost recovery ceiling of 50% of the gross revenue every year and an income tax 

rate of 30% is also considered. There is uncertainty in the field sizes (field 1 and 2) with a total 

of 4 scenarios as described in Table 1.  

The multistage stochastic model becomes very difficult to solve for this instance in 

fullspace due to the complexities introduced in the model by the non-anticipativity constraints, 

and the disjunction for representing the sliding scale fiscal rules. In particular, the best solution 

obtained after 10 hours in fullspace using CPLEX 12.2 solver is $2.97 billion with more than 
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21% of optimality gap (see Table 6). On the other hand, the proposed Lagrangean decomposition 

can solve this problem in approximately 2 hrs for the sequential implementation of the scenario 

subproblem solutions, and in about 1 hr for the parallel implementation (8 processors). Both the 

cases yield a higher ENPV $3.04 billion within a 0.7% of optimality tolerance. Therefore, this 

example illustrates the importance of the decomposition algorithm, and its parallel 

implementation as more complexities are added to the problem, such as the progressive fiscal 

rules.  

Table 5: Sliding scale contractor’s profit oil share for the 3 oilfield example, case (iii) 
Tiers Cumulative Oil Produced Contractor’s Share in Profit Oil 

Tier 1 0-350    MMbbl 50% 

Tier 2 350-700 MMbbl 40% 

Tier 3 >700       MMbbl 20% 

 

Table 6: Computational results for 3 oilfield example, case (iii) 

 Fullspace Model Lagrangean Decomposition 

# 

Constraints 

# 

Dis. Var. 

# 

Cont. Var. 

ENPV 

($109) 

Time 

(s) 

ENPV 

($109) 

Sequential 

Time (s) 

Parallel 

Time (s) 

27,113 1,536 15,857 $2.97 

(>21%) 

>36,000 $3.04 

(0.7%) 

8,990 4,002 

6.2   5 Oilfield Planning Example 

Case (i): Uncertainty in the field size only (8 scenarios) 

This is a larger example for oilfield planning problem under uncertainty than the previous 

one, where we consider 5 oilfields that can be connected to 3 FPSOs with 13 possible 

connections (Figure 12). A total of 51 wells can be drilled in the fields over the planning horizon 

of 20 years. There is uncertainty in the size of fields 1, 3 and 5, where each one has two possible 

realizations (low, high) with equal probability. Therefore, there are a total of 8 scenarios each 

with a probability of 0.125 (see Table 7). Fields 2 and 4 have known recoverable oil volumes of 

200 and 400 MMbbls, respectively.  

It is assumed that the uncertainty in field 1 size is revealed after drilling 3 wells (N1= 3) in 

the field and producing for 1 year (N2= 1) from it. Fields 3 and 5 need at-least 4 wells to be 
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drilled (N1= 4) and one year of production (N2= 1) for this purpose. The problem is to determine 

the optimum investment (FPSO installations and expansions, field-FPSO connections and well 

drilling) and operating decisions (oil production rate) with an objective to maximize the total 

expected NPV (ENPV) over the planning horizon.   

 
Figure 12: 5 oilfield planning example 

 

 Table 7: 5 oilfield planning example, case (i) 

Scenarios s1 s2 s3 s4 s5 s6 s7 s8 

Field 1 Size 

(MMbbls) 

57 403 57 403 57 403 57 403 

Field 3 Size 

(MMbbls) 

80 80 560 560 80 80 560 560 

Field 5 Size 

(MMbbls) 

125 125 125 125 875 875 875 875 

Scenario Probability 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 

  

  Table 8: Model statistics for the 5 oilfield example, case (i)  

 

FPSO-2 FPSO-3

Field-4

Field-1

Field-3 Field-5

FPSO-1

Field-2

Total Oil/Gas 
Production

Problem Type 

Number of 

Constraints 

Continuous 

Variables 

Discrete 

Variables 

SOS1 

Variables 

Reduced Model (MLR) 94,837 54,537 5,144 1600 
Individual Scenario 9,986 6,688 513 200 

 

43 
 



 
 

Table 8 compares the size of the fullspace multistage stochastic MILP model with the 

individual scenario where a significant number of constraints and variables can be observed in 

the former.  Therefore, the fullspace model becomes very difficult to solve directly using CPLEX 

12.2 which takes more than 10 hours to reach 32% of the optimality tolerance with an expected 

NPV value of $20.27 billion. The solution of the sequential implementation of the proposed 

Lagrangean decomposition approach also becomes expensive, but provides a solution with 3.1% 

higher ENPV than the fullspace model ($20.91 billion vs. $20.27 billion) in 31,350s with 2.1% 

of the optimality gap. The parallel implementation is the most efficient, and takes only 9,340s to 

yield the same objective function value as the sequential approach. Table 9 summarizes the 

computational results for this case, and we can observe that the impact of decomposition 

becomes more prominent in the larger instances. To further reduce the gap between the upper 

and the lower bounds, the algorithm can be extended to the duality based branch and bound 

search procedure as proposed in Goel and Grossmann (2006).  

  Table 9: Computational results for 5 oilfield example, case (i) 

 Fullspace Lagrangean Decomposition 

Sequential Parallel 

 UB ($109) 26.78 21.37 21.37 

LB ($109) 20.27 20.91 20.91 

Solution Time (s) >36,000 31,350 9,340 

% Gap >32% 2.1% 2.1% 

Subgradient iterations - 20 20 

Case (ii): Uncertainty in the field size, oil deliverability, WOR and GOR (8 scenarios) 

In this case, we consider uncertainty in the field size, oil deliverability, water-oil ratio (WOR) 

and gas-oil-ratio (GOR) for oilfields 1, 3 and 5 in Figure 12. The uncertainty in oil deliverability, 

water-oil ratio (WOR) and gas-oil-ratio (GOR) is characterized by the corresponding parameters,

oα , wα  and gα  in equations (143)-(145), respectively. Two possible combinations of these 

parameters for each uncertain field results in a total of 8 scenarios, each with a probability of 

0.125 as can be seen in Table 10. The data for the rest of the problem are similar to the case (i) 

presented above for 5 oilfield example.    
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Table 11 represents the computational results for this case. The fullspace multistage 

stochastic model can only provide a solution with ENPV of $21.26 billion in 10hrs when solved 

using CPLEX 12.2. The sequential as well as parallel implementation of the proposed 

Lagrangean decomposition approach provide a higher ENPV $21.78 billion and a significantly 

tighter upper bound than the fullspace model (2.5% gap vs. >28% gap) in less time. Overall, the 

results in this case also emphasize the efficiency of the proposed Lagrangean decomposition 

compared to the fullspace model solved with a state-of-art commercial solver. 

Table 10: 5 oilfield planning example, case (ii) 
Scenarios s1 s2 s3 s4 s5 s6 s7 s8 

 

 

Field 1 

 

Size (MMbbls) 57 403 57 403 57 403 57 403 

oα  0.75 1.25 0.75 1.25 0.75 1.25 0.75 1.25 

wα  0.75 1.25 0.75 1.25 0.75 1.25 0.75 1.25 

gα  0.75 1.25 0.75 1.25 0.75 1.25 0.75 1.25 

 

 

Field 3 

Size (MMbbls) 80 80 560 560 80 80 560 560 

oα  0.75 0.75 1.25 1.25 0.75 0.75 1.25 1.25 

wα  0.75 0.75 1.25 1.25 0.75 0.75 1.25 1.25 

gα  0.75 0.75 1.25 1.25 0.75 0.75 1.25 1.25 

 

 

Field 5 

Size (MMbbls) 125 125 125 125 875 875 875 875 

oα  0.75 0.75 0.75 0.75 1.25 1.25 1.25 1.25 

wα  0.75 0.75 0.75 0.75 1.25 1.25 1.25 1.25 

gα  0.75 0.75 0.75 0.75 1.25 1.25 1.25 1.25 

Scenario Probability 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 

  Table 11: Computational results for 5 oilfield example, case (ii) 

 Fullspace Lagrangean Decomposition 

Sequential Parallel 

 UB ($109) 27.31 22.34 22.34 

LB ($109) 21.26 21.78 21.78 

Solution Time (s) >36,000 36,000 14,872 

% Gap >28% 2.5% 2.5% 

Subgradient iterations - 20 20 
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7. Conclusions 
A general multistage stochastic programming model has been presented for offshore oil and gas 

field infrastructure planning considering endogenous uncertainties in the field parameters and 

progressive production sharing agreements. Discrete probability distribution functions of the 

uncertain parameters, i.e. field size, oil deliverability, water-oil-ratio and gas-oil ratio, are 

considered to represent the scenarios where uncertainty in these parameters can only be revealed 

once an investment is made in the field. The resulting decision-dependent scenario tree is 

modeled using initial and conditional non-anticipativity constraints considering the basic oilfield 

models developed in Gupta and Grossmann (2012a, 2012b). The model yields optimum 

investment and operating decisions while maximizing the expected NPV. Correlations among the 

endogenous uncertain parameters of a field are considered, which reduce the dimensionality of 

the model for large instances. The Lagrangean decomposition algorithm proposed in Gupta and 

Grossmann (2011) is adapted to the corresponding multistage stochastic model for oilfield 

development with parallel solution of the scenario subproblems. Numerical results on the two 

oilfield development planning examples show that the proposed Lagrangean decomposition 

algorithm, either sequential or parallel implementation, is computationally efficient as compared 

to the fullspace method, and allows the solution of intractable instances of the problem. The 

model and solution approach can be further used as a basis to incorporate additional complexities 

such as exogenous uncertainties in oil/gas prices.   
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